Shallow Parsing for Entity Recognition with NLTK and Machine Learning

Getting Useful Information Out of Unstructured Text

Let’s say that you’re interested in performing a basic analysis of the US M&A market over the last five years. You don’t have access to a database of transactions and don’t have access to tombstones (public advertisements announcing the minimal details of a closed deal, e.g. ABC acquires XYZ for $500mm). What you do have is access to is a large corpus of financial news articles that contain within them – somewhere – the basic transactional details of M&A deals.

What you need to do is design a system that takes in this large database and outputs clean fields containing M&A transaction details. In other words, map an excerpt like this: Continue reading “Shallow Parsing for Entity Recognition with NLTK and Machine Learning”

Advertisements